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Overturning in a filling box
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Overturning in a cylindrical filling box driven by a turbulent plume is examined
theoretically and experimentally. We establish the initial penetration depth (h) of the
buoyant flow that intrudes vertically up the sidewall as a function of the box radius
(R) and height (H ). Dimensional arguments reduce the problem to finding η = h/H as
a function of the aspect ratio Φ = R/H . The flow is modelled in two parts, the radial
outflow from the plume along the base of the box and the flow up the sidewall. The
outflow is modelled as a forced radial gravity current with constant buoyancy flux
while the sidewall flow is modelled as a line fountain. Two regimes were found: first,
when the plume outflow is adjusting toward a pure gravity current on impact with
the vertical wall and the rise height is given by η ∼ Φ−1/3; secondly, when the outflow
is fully developed on, or before, impact and the rise height is given by η ∼ Const.
Experimental results show good agreement with these scalings and allow the constants
of proportionality to be established.

1. Introduction
The filling box model was first introduced by Baines & Turner (1969), who examined

the time-dependent stratification established by a single turbulent plume in a closed
vertical cylinder of radius R and height H with an initially uniform environment. The
plume from a localized buoyancy source at the base (z = 0) rises to the top of the box
(z = H ) and spreads out radially, forming a buoyant layer. The continuous supply of
increasingly buoyant fluid causes the layer to deepen and the density front to approach
the plume source. Baines & Turner (1969) developed a model for the movement of
the density front and the stratification produced in the box once all the environment
had been recycled through the plume. They assumed that the initial outflow from the
plume formed a horizontal layer of zero thickness at time t = 0 and that turbulence in
this deepening layer rapidly decayed as it became part of the environment. However, in
their experiments, they found that whilst this assumption was reasonable for aspect
ratios H/R � 1,† for narrower boxes (larger H/R) the outflow from the plume
overturned after colliding with the vertical sidewall and mixed with the ambient. The
dynamics of this mixing were not included in their model. Baines & Turner (1969)
balanced the destabilizing momentum force (∼πw2b2|z = H ) associated with the plume
of vertical velocity w and width b impinging on the box ceiling with the stabilizing
buoyancy force (∼πR2bg′|z =H ), where g′ is the buoyancy of the plume, associated
with the layer. They thereby demonstrated that the degree of overturning, hereafter
referred to as the stability of the flow, is a function of a purely geometric parameter,

† Baines & Turner (1969) define the box aspect ratio as H/R. However, we scale all lengths on
the box height H and, therefore, define the aspect ratio of the box as Φ = R/H .



298 N. B. Kaye and G. R. Hunt

namely, the box aspect ratio H/R. They also demonstrated that the flow is stable,
that is with negligible overturning, for H/R < 1. This conclusion is supported by their
experimental results. Note that this geometric result is only valid for a pure fully
developed turbulent plume from a point source for which b ∼ H . For a non-pure
source (either forced or lazy) that has fully adjusted on reaching z =H , a virtual
origin correction is needed.

A full analytic solution for the flow in the box and exterior to the plume was
developed by Manins (1979). Manins (1979) also found that the solution was stable
for H/R < 1. While Baines & Turner (1969) assumed an initial layer of infinitesimal
depth, Manins (1979) found the initial layer occupied a quarter of the depth of the
box. This depth is significantly larger than we found in our experiments (§ 5). Wong,
Griffiths & Hughes (2001) examined the flow structure in the ambient fluid outside
the plume experimentally. They again found that the initial layer was approximately a
quarter of the box depth and that the ambient flow was separated into various bands
of inflow and outflow relative to the plume. Worster & Huppert (1983) developed a
series solution for the transient buoyancy profiles.

The flow in filling boxes with aspect ratios greater than unity was studied by Barnett
(1991). Barnett found that for sufficiently large aspect ratios (H/R � 4) the downflow
in the ambient that balances the upflow in the plume plays a critical role, and for
H/R � 5.8 the plume no longer reaches the top of the cylinder but is destroyed by
shear-induced turbulence between the rising plume and the down-flowing ambient.
Hunt, Cooper & Linden (2001) examined the stratification established in wide boxes
(low H/R) as well as the effects of a forced plume in a filling box and modified the
model of Baines & Turner (1969) to account for the plumes source momentum flux.
Additionally, they considered simultaneous momentum-flux and buoyancy-flux inputs
from separate sources.

The filling box model was extended by Linden, Lane-Serff & Smeed (1990), who
examined a filling box that was connected, via openings in the top and base, to
an external quiescent ambient. They used this model to examine buoyancy-driven
ventilation flows in buildings. In this application the plume rises to the top of the
box and spreads out as in the filling box of Baines & Turner (1969). However, as
the buoyant layer deepens, the hydrostatic pressure difference between the internal
and external environments drives a flow through the openings. Therefore, instead of
the buoyant layer filling the entire space, the buoyancy and volume fluxes that flow
through the box due to the pressure difference balance the fluxes into the buoyant
layer from the plume leading to a steady two-layer stratification and displacement
flow.

In practice, displacement flow has the advantage of leading pollutants, or stale air,
away from the lower occupied regions of a room into a buoyant layer near the ceiling,
while drawing fresh exterior air into the occupied regions (Hunt & Kaye 2006). It is,
therefore, of interest from a design viewpoint to establish the parameter range over
which this flow is stable. Overturning of the upper layer during the initial transients
may result in stale and polluted air being reintroduced into the occupied areas of the
room.

Another context in which the filling box model has been applied is confined fire
plumes. Of concern is, for example, the rate at which a room will fill with smoke
produced by a small fire in the centre of the floor. Again, there is considerable
interest in the overturning of the plume outflow at the sidewall. Alpert (1975) models
the outflow from a fire plume impinging on a horizontal ceiling as a radial jet that
increases in depth with radius. This result is used by Cooper (1988) to examine
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Figure 1. Schematic showing a confined descending plume of buoyancy flux F colliding with
a horizontal surface, spreading out radially and then rising up the sidewalls and overturning.

the ceiling jet when it is turned down by sidewalls. Cooper (1988) examines aspect
ratios of H/R > 1 and finds that the initial maximum vertical penetration depth
(h) is a constant fraction of the room height (h/H ≈ 0.8). Cooper (1988) claims
that Baines & Turner (1969) would have found the same result if they had used a
larger Reynolds number plume source in their experiments. Jaluria & Kapoor (1992)
examine experimentally the wall flow driven by a buoyant ceiling jet. They produce
penetration depth correlations in terms of the outflowing buoyant jet Richardson
number. Kapoor & Jaluria (1996) extend the range of Richardson numbers considered
earlier and also present heat transfer correlations for the flow.

In all this work, a complete model is not presented for the penetration depth of
the overturning flow along the wall as a function of the box aspect ratio (figure 1). In
this paper we consider a negatively buoyant, pure, localized, axisymmetric Boussinesq
plume of source buoyancy flux F centrally located at the top of a closed cylinder of
radius R and height H . For wide cylinders (H/R < 1) the plume will descend to the
base of the box and spread radially outwards forming a buoyant layer that deepens
over time. This flow is well described by the filling box model of Baines & Turner
(1969) and Worster & Huppert (1983). For narrower cylinders, the initial outflow
from the plume rises vertically up the side of the container and overturns (or slumps
back; see § 5) as it collapses back under gravity. The greater the aspect ratio, the
greater the depth of penetration h of this overturning. In the limit of a very narrow
container the plume will be influenced by upflow in the environment before it reaches
the base (Barnett 1991; Huppert et al. 1986).

A goal of this paper is to quantify the extent of the overturning during the initial
transient in the unstable regime intermediate to the ‘filling box’ (Baines & Turner
1969) and ‘blocked’ regimes (Barnett 1991), that is, for 1<H/R � 4. We develop a
two-part model of the flow. Part one considers the outflow from the plume whose
development close to the impingement region we model as a forced radial gravity
current with a constant buoyancy flux. Part two treats the flow up the sidewall as a
line wall fountain with source conditions given by the outflow model.

In § 2 we review the various models proposed for the outflow produced by a plume
impinging on a horizontal surface. We draw an analogy between classifying radial
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gravity currents and classifying plumes in terms of their respective source conditions.
We demonstrate that the adjustment region for the radial flow, namely, the radial
distance over which the flow adjusts to a constant-Froude-number gravity current,
may be regarded as similar to the characteristic vertical length scales of either forced
plumes (Morton 1959) or lazy plumes (Hunt & Kaye 2005), which themselves adjust
to a pure plume in the far field. The details of the adjustment process and the
radial extent over which it occurs are not well understood, although modelling this
adjustment is central to the present study. Knowledge of the process of transition
from vertical plume flow to horizontal gravity current flow is key to understanding a
number of flows of practical interest. For example, the near-field mixing of a buoyant
sewage plume impinging on the surface of the sea will be controlled by the dynamics
of this adjustment region. We show in § 2 that, for a pure plume impinging on a
horizontal boundary, the flow in the adjustment region is a forced radial gravity
current regardless of the source–boundary separation. From this result we develop
equations describing the volume and momentum fluxes in the current as a function
of radius and outflow source conditions. This model is compared to our experimental
results. In § 3 we model the vertical wall flow as a turbulent line fountain. We review
existing work on point source and line source fountains and re-scale these results to
give the rise height up the sidewall as a function of the plume outflow parameters
of § 2. Section 4 brings these two models together and makes predictions for the
penetration depth as a function of the box aspect ratio. Experiments to verify the
outflow front position and penetration depth predictions are presented in § 5 and
conclusions are drawn in § 6.

2. Outflow from a plume impinging on a horizontal surface
We consider the collision of an axisymmetric constant-buoyancy-flux turbulent

plume from a point source with a horizontal boundary in a quiescent uniform
environment. (In general, the environment in a filling box will be stratified and this
stratification will affect the plume outflow. However, we are only concerned with the
initial transient when the box is ‘empty’. There is then no stratification to consider.)
A schematic of the flow and the nomenclature adopted is given in figure 2. The
radial coordinate with origin on the plume’s vertical axis is denoted by r and the
depth of the outflow by ∆(r). In practice these flows are relatively common, for
example, a fire plume or a thermal plume from a heat source in a room impinging
on a ceiling (in this case a solid boundary), or a buoyant waste-water plume reaching
the surface of the sea into which it is released. We restrict our attention to solid
boundaries and to situations where the density difference between the plume and
the surroundings is small compared with the density of the surroundings so that the
Boussinesq approximation is valid.

On impinging with the boundary, the flow from the plume will spread horizontally
outwards and, in the far field, develop into a constant-Froude-number radial gravity
current. Near the point of impact, however, there is an adjustment region, of horizontal
extent ra , over which the flow develops into a pure gravity current – here we use
‘pure’ to refer to a current with a constant Froude number. We assume that in the
impingement zone (shaded region of figure 2) there is no mixing with the ambient.†

† This assumption would lead to the plume volume and momentum fluxes and the plume radius
at the point of impingement being calculated at H − ∆0 rather than at H (2.10). This would result
in a correction of order (1 − ∆0/H )5/3 to the volume flux, (1 − ∆0/H )4/3 to the momentum flux
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Figure 2. Schematic of the outflow from a dense pure plume impinging on a horizontal
boundary showing the nomenclature adopted. The impingement zone is shown by the shaded
area below the plume.

The only entrainment into the flow occurs in the plume above the impingement zone,
and in the outflow at radial distances greater than the plume radius at the point
of impingement. This assumption is consistent with the assumption made by Lee &
Jirka (1981) and implies that the volume flow rate in the plume at the boundary will
be equal to the volume flow rate in the outflow at the outflow source.

We begin by stating a key result relating to the spread of constant buoyancy
flux radial gravity currents before considering the near-source adjustment region. We
then present a model (§ 2.1) for the bulk properties of the outflow and compare our
predictions to experimental measurements (§ 5.1) of the outflow front movement.

Chen & List (1977) balance the buoyancy force (ρg′∆2) and inertial force (ρr2∆/t2)
to establish a relationship (r = ciF

1/4t3/4) for the position of the front of a gravity
current outflow with time (t) for the inertial regime. Following on from this work,
Britter (1979) solves the governing shallow-water equations and obtains the same
time scalings. Experimental results from Britter (1979) suggest ci = 0.84, hence

r = 0.84F 1/4t3/4. (2.1)

2.1. Source conditions and length scales

For a constant buoyancy flux radial gravity current the main parameters are the
current depth ([∆] = L), radial distance ([r] = L) and buoyancy flux ([F ] = L4T −3).
The other parameters of note are the volume flux ([Q] = L3T −1) and momentum
flux ([M] = L4T −2) which can be expressed in terms of ∆, r and F . Assuming the
fully developed flow (i.e. for sufficiently large r) has a constant depth, as observed
by Britter (1979), and denoting the horizontal velocity by v (independent of depth),

and (1 − ∆0/H ) to the plume radius. However, as the plume is assumed pure, the balance of the
fluxes and the plume Froude number will be unchanged and, therefore, this O(10−1) correction to
the fluxes is neglected in our analysis that follows.
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we can use dimensional analysis to develop scalings for the volume flux (2πrv∆),
momentum flux (2πrv2∆) and velocity of the current

Q = C1∆F 1/3r2/3, M = C2∆F 2/3r1/3, (2.2)

and

v =
dr

dt
∼ F 1/3r−1/3. (2.3)

It is also possible to obtain the latter result by differentiating (2.1) to give

v =
dr

dt
= 0.59F 1/3r−1/3, (2.4)

which can be used to estimate the values of the constants C1 = 3.7 and C2 = 2.2 needed
to complete (2.2). The flow’s buoyancy is therefore given by g′ = F/Q ∼ F 2/3r−2/3∆−1.
From this, (2.4) and (2.2) we can define a Froude number for the flow as

Fr =
v√
g′∆

∼ F 1/3r−1/3√
(F 2/3r−2/3∆−1)∆

= Const. (2.5)

If the ‘source’ conditions which characterize the supply of fluid to the current do not
result in this Froude number at the current source, as will in general be the case,
there will be an adjustment region (in the near field) before the flow becomes a ‘pure’
constant buoyancy flux radial gravity current (in the far field). In the ‘pure’ constant
buoyancy flux flow the gravity current is still entraining fluid (Q ∼ r2/3). Therefore,
the outflow buoyancy decreases with increasing radial distance from the centre.

These equations give straightforward estimates of the volume and momentum fluxes
at a given radial distance, but for chosen values of the fluxes Q and M they can
be inverted to provide an estimate of the radial distance a current of buoyancy flux
F would need to travel in order to obtain those flux values. It is in this sense that
we define two radial length scales, namely, the volume flux length scale (rQ) and the
momentum length scale (rM )

rQ = 3.7−3/2∆
−3/2
0 Q

3/2
0 F −1/2, (2.6)

rM = 2.2−3∆−3
0 M3

0F
−2, (2.7)

where the subscript ‘0’ indicates the source value for the current. Note that the
plume and the current source buoyancy fluxes are identical (F = F0 = constant) as
the environment is unstratified; we assume that there are no transfers of buoyancy
between the fluid and the boundary. Drawing an analogy with the theory for forced
(Morton 1959) and lazy (Hunt & Kaye 2005) plumes, the current can be regarded as
‘forced’ if rM > rQ, ‘lazy’ if rM < rQ and ‘pure’ if rM = rQ. In line with plume theory, the
forced current has an excess of source momentum flux and the lazy current a deficit
compared with a constant Froude number (pure) current of identical buoyancy flux.
We can also define a ratio of these length scales analogous to that for plumes,

Γ0 =
rQ

rM

= 1.5
Q

3/2
0 ∆

3/2
0 F 3/2

M3
0

, (2.8)

and, thus, the flow in the adjustment region can be regarded as ‘forced’ for Γ0 < 1,
‘pure’ for Γ0 = 1 or ‘lazy’ for Γ0 > 1. As discussed previously, the corrections to the
volume and momentum fluxes and plume radius due to the presence of the mixing
zone had powers of 5/3, 4/3 and 1, respectively. Substituting these corrections into
(2.8) we see that all the corrections cancel, indicating that our use of the plume flux
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values at the lower boundary makes no difference to the controlling parameter of the
outflow Γ0.

Note that this discussion differs from the predictions of some analytical models,
such as Britter (1979), that suggest that the similarity solution is independent of all
but the source buoyancy flux. However, this latter result is based on the assumption
that there are no imposed length scales at the source. In general this is not the case,
and the similarity solution will only be valid at the source if the imposed source
length scales rQ and rM are equal.

For a highly forced current one would expect a development region for small r

(<rM ) that behaved as a radial wall jet. For a smooth boundary this is a constant
momentum flux flow with a linear increase in current depth with radius as observed
by, for example, Lee & Jirka (1981) and Lawrence & MacLatchy (2001).

The ‘source’ conditions for the current are those supplied by the pure plume.
Assuming top-hat profiles in the plume, following Morton, Taylor & Turner (1956),
the radius (bp), volume flux (Qp) and momentum flux (Mp) at the boundary can be
expressed as

bp =
6αtH

5
≈ 0.15H, (2.9)

Qp = π

(
5F

8παt

)1/3 (
6αtH

5

)5/3

= 0.16F 1/3H 5/3, (2.10)

Mp = π

(
5F

8παt

)2/3 (
6αtH

5

)4/3

= 0.35F 2/3H 4/3, (2.11)

where we have taken αt =0.09
√

2 (see Hunt & Kaye 2001) as the plume entrainment
coefficient appropriate for top-hat profiles. We use (2.9) as the radius at which the
current begins. Continuity requires (2.10) to be the source volume flux of the current.
As the plume impinges on the horizontal surface the vertical momentum flux will be
reduced to zero. There will also be energy losses as the flow changes direction at the
solid boundary.

As there is only one length scale for the problem of a pure plume impinging
on a horizontal surface, namely, the distance (H ) from the plume point source to
the boundary, all other length scales for the flow will scale linearly on this height.
Therefore, the plume radius and, consequently, the outflow source radius r0 as well
as the outflow source thickness ∆0 will scale on H . Conservation of volume can then
be applied to the control volume shown (shaded) in figure 2 to give

Qp = πr2
0w = 2πr0∆0v. (2.12)

Since the length scales r0 and ∆0 both scale on H , (2.12) implies that w ∼ v. We can
therefore write an expression for the radial outflow’s ‘momentum flux’

M0 = 2πr0∆0v
2 ∼ πr2

0w
2 ∼ Mp. (2.13)

Hence

M0 = γMp (2.14)

where γ is a constant. Note that the total radial momentum flux of the flow integrated
around the circumference is required to be zero by conservation of momentum
flux as there is no radial component of momentum in the pure plume. However,
the ‘momentum flux’ quantity given by (2.13) can still be evaluated and used to
characterize the level of shear expected at the source. It can then be used to calculate
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the values of rM and Γ0 to give a balance between the destabilizing shear of the flow
and the stabilizing buoyancy force. In general, the above scaling argument implies
that

2πr0∆0v
n ∼ πr2

0w
n. (2.15)

So, for example, one would expect that the kinetic energy flux (n= 3) of the outflow
would be a constant fraction of the kinetic energy flux of the plume at the point of
impingement.

One could argue that the parameter γ would be a function of various non-
dimensional groups such as the plume Froude number at the point of impingement.
It could also be influenced by background stratification. However, we are considering
only point source pure fully developed turbulent plumes that have a constant Froude
number at all heights, and an unstratified ambient. A similarity argument can then be
made that γ will be constant for all such pure plume impingement flows. Furthermore,
if γ were not a constant, as assumed herein, it would not have been possible to collapse
all our experimental data for the outflow front movement as shown in figure 10.

The boundary conditions on the radial outflow are now

r0 = 0.15H, Q0 = 0.16F 1/3H 5/3 (2.16)

and

M0 = γMp = 0.35γF 2/3H 4/3. (2.17)

Therefore, the source depth of the current is given by

∆0 =
Q2

0

2πr0M0

=
0.068

γ
H, (2.18)

which implies that the initial outflow depth increases as the energy loss due to the
change in flow direction increases (that is, γ decreases).

Evaluating the length scales defined in (2.6) and (2.7) using (2.16)–(2.18) leads to

rQ = 0.41γ 3/2H and rM = 7.1γ 6H, (2.19)

and hence

Γ0 = 0.58γ −9/2. (2.20)

We note the particularly sensitive dependence of rM and Γ0 on γ , and that (2.20)
indicates that the flow is forced (Γ0 < 1) near the point of impingement if γ > 0.53.
Lee & Jirka (1981) suggest that the energy loss due to plume impingement is analogous
to losses due to a 90◦ bend in a pipe and cite an energy loss of 20%. Combining
(2.14) and (2.15) with this energy loss value gives a value of γ ≈ 0.9. Therefore, we
expect Γ0 < 1 (from (2.20)) and, thus, the outflow to be forced.

We therefore assume that the outflow behaves as a turbulent radial momentum jet
near the point of impingement with no loss in momentum flux as the flow spreads
along the (smooth) boundary. This turbulent flow will entrain ambient fluid and is
expected to increase linearly in depth with radius (Bakke 1957). Turbulent entrainment
will change the balance of fluxes in the current and will increase the local value of
Γ (r) until it reaches the pure gravity current balance of Γ (r) = 1. The flow will then
be described by (2.1). For a constant momentum flux wall jet we have

∆ =
d∆

dr
(r − r0) + ∆0 and M = M0 = 0.35γF 2/3H 4/3, (2.21)

where d∆/dr and γ are our unknown constants, and r0 and ∆0 are given by (2.16)
and (2.18), respectively. Carrying these unknowns through we can express the velocity
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v(r) and volume flux Q(r) as

v =

√
M0

2πr∆
=

γ 1/2
√

0.35F 1/3H 2/3

√
2πr∆

(2.22)

and

Q =
√

2πr∆γ 1/2
√

0.35F 1/3H 2/3. (2.23)

To leading order in r , the outflow depth is given by ∆ ≈ (d∆/dr)r . This
approximation is valid provided (d∆/dr)r is greater than (d∆/dr)r0 − ∆0, which
is the difference between two terms of order 10−1. Hence, using (2.22) we estimate the
movement of the front with time in the adjustment region as

dr

dt
≈

√
0.35

2π

√
γ

d∆/dr

F 1/3H 2/3

r
. (2.24)

This is valid for r � r0, which is reasonable provided ra � r0. Integrating (2.24) gives

r ≈ 0.69

(
γ

d∆/dr

)1/4

F 1/6H 1/3t1/2 (2.25)

to leading order in r .
We now introduce length and time scales based on the vertical separation H and the

plume buoyancy flux F . Dimensionless time τ and radial coordinate φ, respectively,
are defined as

τ =
t

H 4/3F −1/3
and φ =

r

H
. (2.26)

In the near-field (forced) adjustment region the non-dimensional front position, from
(2.25), is

φ = 0.69

(
γ

d∆/dr

)1/4

τ 1/2, (2.27)

and for the far-field pure gravity current flow described by Britter (1979), (2.1), we
get

φ = 0.84τ 3/4. (2.28)

In order to establish the value of the constant in (2.27) and the radial extent of the
forced adjustment region we turn to laboratory experiments (see § 5).

There is considerable debate about the exact nature of the near-source outflow.
Our experiments indicate (figures 12 and 13) the presence of a gravity current like
head on the flow. This head has been characterized as a ring vortex in other contexts
(Patterson et al. 2006). It could, therefore, be argued that the behaviour of the ring
vortex dominates the front movement of the flow. The ring vortex from a lock release
gravity current has recently been studied by Patterson et al. (2006), who found that
the ring vortex at the front of the gravity current had three distinct phases. The
first two phases were characterized by two different constant velocity regions. This
constant velocity behaviour is not observed in our experiments (see figure 9).

Clearly the current that flows behind the head of the outflow influences the front
movement. This behaviour has similarities with the starting cap on a point source
plume. Turner (1962) showed that, although the starting cap on a plume looks like a
thermal, the trailing plume flow constrains the radial growth of the cap and controls
its velocity. By analogy, the head of the outflow examined herein is controlled by
the flow behind, and the ring vortex behaviour described by Patterson et al. (2006)
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is not observed. Furthermore, given that the outflow is ‘forced’, that is, momentum-
dominated, it can be regarded as super-critical and therefore controlled at the source,
rather than by the fluid buoyancy. Therefore, in the near-source region, the flow will
behave as a wall jet.

In the far field, the source conditions should have no influence on the flow
development and the flow should behave as a constant buoyancy flux radial gravity
current as described by Britter (1979). The adjustment from the forced flow to
the fully developed buoyancy-driven flow can be attained either through an internal
hydraulic jump, or via mixing and energy dissipation in the jet-like near-source region
(Wilkinson & Wood 1971). For the case of a plume impinging on a horizontal surface,
experimental observations of (Lawrence & MacLatchy 2001, abstract) ‘provide no
compelling reason to postulate the existence of an internal hydraulic jump’. Finally,
we note that the front movement predictions of our model accurately describe our
experimental results given in § 5 supporting the wall jet (near field) and pure radial
gravity current (far field) modelling approach we have adopted.

3. Overturning
We now turn our attention to what happens after the outflow collides with the

sidewall of the cylindrical box. We assume that the plume source is centred in the box
top so that the radial outflow is symmetric and will collide with the sidewall at the
same instant around the circumference. We also assume that the radius of the cylinder
is large compared with the depth of the outflow so that, having been turned upwards
by the sidewall, the dense flow can be treated as a turbulent line wall fountain. In
this section we review the pertinent literature on fountains, focusing on predictions
of their rise height. We then re-scale these existing results in order to fit with the
scalings used in our description of the outflow. In § 4 we combine the outflow (§ 2)
and fountain (§ 3) models to predict the rise height up the wall as a function of the
box aspect ratio.

Previous work on gravity currents colliding with a vertical wall focused on one-
dimensional lock release gravity currents (see Simpson 1982, p. 175). In this case the
fluid rises to a height of approximately twice the initial layer depth. However, the
different geometry (axisymmetric as opposed to one-dimensional) and different source
conditions (constant buoyancy flux as opposed to constant buoyancy) means that this
work is not applicable to our problem. Instead we turn to the literature on turbulent
fountains.

Turner (1966) used dimensional arguments to show that the rise height (zm) of a free
axisymmetric fountain is a linear function of the jet length (Lj ) of the fountain source

zm ∼ Lj ∼ M
3/4
f F

−1/2
f ∼ Qf rf

−3/2g′
f

−1/2, where the subscript ‘f ’ denotes the value at
the fountain source; Qf is the volume flux, rf the radius, g′

f the buoyancy, Mf the
momentum flux and Ff the buoyancy flux. Turner (1966) also provides considerable
experimental evidence to support this scaling relationship. Following on from this,
Baines, Turner & Campbell (1990) present data on axisymmetric fountains that
suggest the rise height scaled on the source radius is a linear function of the source
Froude number, i.e. zm/rf =2.46Frf where

Frf =
Uf√
rf g′

f

=
Qf

πrf
5/2g′

f
1/2
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and Uf denotes the vertical velocity at the fountain source. This is the dimensionless
form of the jet length scaling.

In a paper on line-source fountains, Goldman & Jaluria (1986) present correlations
based on hot gas experiments that relate the rise height to the Grashof number (Gr)
and the Reynolds number (Re) of the source defined therein as

Gr =
g′

f D3
f

ν2
and Re =

Uf Df

ν
, (3.1)

where Df ( = 2rf ) is the width of the fountain source and ν is the kinematic viscosity.
They present results for both free and wall line fountains,

zm.free

Df

= 3.959

(
Gr

Re2

)−0.440

and
zm.wall

Df

= 4.424

(
Gr

Re2

)−0.389

. (3.2)

The quantity Gr/Re2 is equal to the reciprocal of Frf squared,

Gr

Re2
=

g′
f Df

Uf

=
Q3

0F0

M3
0

=
1

Fr2
f

, (3.3)

meaning that (3.2) can be re-written in terms of the Froude number as

zm.free

Df

= 3.959Fr0.88
f and

zm.wall

Df

= 4.424Fr0.78
f . (3.4)

This suggests that the rise height is slightly less than linear in Frf , which is similar to
previously published work for axisymmetric fountains.

We now discuss what one might expect to be the differences between a free and
wall fountain, and how these differences will affect the fountain rise height. The
presence of the wall will tend to cause a frictional drag on the fountain, reducing
its vertical momentum flux and, thereby, its rise height. However, for large Reynolds
numbers, this effect will be minimal. The wall will also reduce the entrainment as
the fountain will only be drawing in ambient fluid from one side. This will tend
to allow the fountain to rise to a greater height as entrainment acts to reduce the
rise height (zm ∼ α−1/2 for highly forced fountains; see Kaye & Hunt 2006). These
two wall effects act against each other. Based on this observation, along with the
correlations of Goldman & Jaluria (1986) (see (3.4)), it appears that there are only
minor differences between the rise heights of wall and free line fountains.

We therefore model the rise height of our side-wall flow as a turbulent fountain
with rise height given by

zm

Df

= CFrf l, (3.5)

where the parameter C (taken to be a constant) is a function of the entrainment
coefficient (αf l) appropriate for a line fountain. In terms of the source parameter Γf l ,
analogous to the outflow source parameter in (2.8), we get

zm

Df

∼ Γ
−2/3
f l , (3.6)

where

Γf l =
1

2αf l

Q3
f Ff

M3
f

. (3.7)
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We do not establish the value of these constants in this work, but rather use the rise
height scaling in our model development and then verify the qualitative behaviour
predicted.

4. Penetration depth model
We now return to the original problem of predicting the overturning of a plume

in a cylindrical box (see figure 1). We have established a description of the outflow
(2.27) and (2.28) and will model the flow up the sidewall as a turbulent line wall
fountain (3.6). We now couple these two models to produce a final expression for
the rise height up the wall η = h/H as a function of the aspect ratio Φ = R/H . We
assume that the aspect ratio of the box and the Reynolds number of the plume are
such that viscous forces are negligible (see § 4.3 for more details on these limitations).

Based on the models of § 2 and § 3 we note that the problem can be broken down
into two domains: first, where the aspect ratio of the box is large enough (Φ > 0.66)
that the outflow is a fully developed pure gravity current on reaching the sidewall
(2.28) and, secondly, where the box is sufficiently tall (Φ < 0.66) that the outflow
behaves as a buoyant wall jet when it hits the sidewall. This transition value of
Φ =0.66 is based on our experimental results (§ 5).

4.1. Shorter cylinders (Φ > 0.66)

We begin by examining cylinders where the aspect ratio is sufficiently large (short
boxes) that the outflow is a fully developed pure radial gravity current as it reaches
the sidewall.

4.1.1. Turning region

In order to couple the two flow descriptions above we need to examine the corner
flow where the outflow from the plume is turned upwards and becomes a fountain.
This is not too dissimilar to the plume impinging on the base of the box, and similar
assumptions will be made. Following the same arguments as in § 4, we assume that
the buoyancy and volume fluxes are conserved and that the momentum flux quantity
is reduced by a factor γ . We also assume that the thickness of the outflow is small
compared to the radius of the box and that, therefore, the wall can be treated as
linear and of length 2πR. A schematic of this region is shown in figure 3.

From (2.2) we can write the volume flux and a quantity with dimensions of
momentum flux at r = R as

Q(r = R) ≈ 3.7∆ssF
1/3R2/3 and M(r = R) ≈ 2.2∆ssF

2/3R1/3. (4.1)

We assume that this flow turns upwards at the corner and that a turbulent line
fountain forms with source fluxes given by (4.1). For a line fountain, fluxes are
expressed per unit length so from (4.1) the source fluxes become

Qf ≈ 3.7∆ssF
1/3R2/3

2πR
, Ff =

F

2πR
and Mf = γMR ≈ 2.2γ∆ssF

2/3R1/3

2πR
. (4.2)

Again we assume that γ is a constant and that, as the flow is being turned through
90◦, the value will be similar to that used previously. The actual value is not important
as we only make qualitative predictions about how the rise height scales with the
box aspect ratio. We can now solve for the source width Df of the fountain which is
given by

Df =
Q2

f

Mf

=
∆ss

γ
. (4.3)
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Uf

Df

V(r)
∆ss

Figure 3. Schematic showing a fully developed pure radial outflow from the plume colliding
with the box sidewall and turning upwards.

Based on (4.2), (3.7) reduces to

Γf l =
1

2αf l

(
3.7

2.2

)3
1

2πγ 3
= Const, (4.4)

that is, the balance of fluxes at the fountain source is independent of the height or
radius of the box. The source length scale (Df ) is given by

Df = ∆ss/(2αf lγ ). (4.5)

Based on (4.5) and that on dimensional grounds ∆ss scales on the plume height H

(see figure 7 for experimental verification), we get

Df ∼ H. (4.6)

4.1.2. Rise height

We now turn to the question of how high up the sidewall the fountain will rise.
As the scaled rise height ζm ( = zm/Df ) is a function of Γf l only (3.6) and Γf l is a
constant (4.4), we find that the rise height is

ζm =
zm

Df

∼ Const. (4.7)

The greatest height the fountain attains is therefore

zm = ζm × Df ∼ H. (4.8)

Although there is significant uncertainty regarding the value of the rise height, it is
clear that in the fully developed pure radial gravity current regime the rise height up
the sidewall is a function of the box height only and, therefore, not a function of the
aspect ratio.

4.2. Taller cylinders (Φ < 0.66)

We now turn our attention to boxes that are sufficiently narrow (R <ra) that the
outflow collides with the sidewall while in the adjustment region.
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4.2.1. Turning region

The volume and momentum fluxes as functions of r are known from (2.23) and
(2.21); hence we can calculate the fluxes per unit length at r = R as

Qf =

√
0.35 × 2πR∆(r = R)γF 1/3H 2/3

2πR
, Ff =

F

2πR
(4.9)

and

Mf = γM(r = R) =
0.35γ 2F 2/3H 4/3

2πR
. (4.10)

This leads to a first-order scaling for Γf l of

Γf l ∼
(

R

H

)2

. (4.11)

We note that this is the same controlling parameter identified by Baines & Turner
(1969) expressed there as I/B = 9αp/(10(H/R)2).

Assuming, as we did in § 2, that the depth grows linearly with radius for r0 <r < ra

we have ∆ ∼ R at r = R. As the outflow turns upwards at the corner we can again
calculate the fountain width at the source, Df , to get

Df =
Q2

f

Mf

=
∆(r = R)

γ
∼ R. (4.12)

4.2.2. Rise height

The scaling relationship between the box geometry and fountain source conditions
are given by (4.11) and (4.12). Combining these with (3.6) we establish the rise height
up the sidewall as

zm = ζm × Df ∼ Γ
−2/3
f l × Df /2αf l ∼

(
H

R

)4/3

× R ∼ H

(
R

H

)−1/3

. (4.13)

This implies that as the cylinder gets relatively taller and thinner, that is, R/H

decreases, the rise height up the sidewall h/H increases, as observed by Baines &
Turner (1969).

4.3. Full non-dimensional model and limitations

We have now produced estimates for the rise height zm of the plume outflow up the
sidewall of a cylindrical box for small (Φ < 0.66) and large (Φ > 0.66) aspect ratios
Φ =R/H . This rise height is taken to be the maximum initial penetration depth of
the flow, that is, zm = h. We now scale these results on the box height and re-state the
limits on the applicability of each equation.

Dividing both (4.8) and (4.13) by H , we get the final scaling relationships between
the dimensionless rise height η = h/H and the box aspect ratio Φ = R/H :

η ∼ Φ−1/3 for Φ < 0.66,

η ∼ Φ0 for Φ � 0.66.

}
(4.14)

We now discuss the practical limitations of our model. The main areas we discuss
are viscous forces, the effect of the sidewall on the growth of the plume and scalings
for the source velocity at the point of impingement and at the sidewall.

We assume that the plume is fully turbulent at the source. Therefore, the Reynolds
number will increase as Re ∼ z2/3 and viscous forces in the plume can be ignored. In
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the outflow, however, viscous forces will become increasingly significant with distance
from the plume axis. The distance at which viscosity will play a role was quantified
by Britter (1979), who showed that viscous forces will become significant for times
greater than 0.4 × t∗, where t∗ is defined as

t∗ = Q0(νF )−1/2. (4.15)

Substituting (4.15) and (2.10) into (2.1) we obtain the radial distance from the plume
axis at which viscous forces become significant:

r∗ ≈ 0.1HRe3/8 (4.16)

where

Re =
F 1/3H 2/3

ν
. (4.17)

This means that for boxes with aspect ratios

Φ > Φ∗ = 0.1Re3/8 (4.18)

viscous forces cannot reasonably be ignored, and (4.14) will not apply.
The second possible source of error in our model is the influence of the box sidewall

on the development of the descending plume. If the sidewall restricts the plume’s
development the assumed outflow source conditions will not apply. As mentioned
in § 1, this problem was examined by Barnett (1991), who found that for aspect
ratios Φ � 0.25 the movement of the environment surrounding the plume significantly
affected the plume dynamics and for Φ < 0.17 the plume would break down. Therefore
our model will be restricted to aspect ratios greater than

Φmin = 0.25. (4.19)

Finally, there is significant uncertainty about the value of the parameter γ (2.14)
when the plume impinges with the box base and when the outflow hits the sidewall.
Based on the experimental results for the outflow presented in § 2 we expect the value
to be close to one, and the estimate of Lawrence & MacLatchy (2001) of γ ≈ 0.9
therefore appears to be reasonable. However, uncertainty there, as well as error in
using first-order estimates for the radial growth rate of the outflow in the adjustment
region means that, without experimental data, we are unable to put meaningful
constants in front of the scalings of (4.14). To overcome these problems, and to verify
the validity of the scaling relationships developed, a series of laboratory experiments
were performed (§ 5) to measure various outflow parameters and the extent of plume
overturning in a cylindrical filling box.

5. Experiments
We performed two sets of experiments. The first set examined the plume

impingement and resulting outflow, while the second series measured the overturning
height for a range of cylinder aspect ratios.

In both sets of experiments the plume was created by supplying a salt solution
(NaCl) from a nozzle (designed to produce turbulent flow at the nozzle exit) at
constant volume flux. The volume flux was kept steady by the use of a constant-head
gravity feed tank. The flow rate was measured using an inline rotameter flow rate
meter and was controlled by a needle valve.

Two visualization techniques were used during the course of these experiments. For
the overturning experiments and those to measure the adjustment radius, the plume
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Constant-head tank(a)

(b) Constant-head tank

Inline flow meter
with needle valve

Inline flow meter
with needle valve

Plume nozzle

Plume nozzle

Plume and
radial outflow

False bottom

False bottom

Perspex cylinder

h

H

Figure 4. Schematic of the experimental setup for (a) tracking the front movement and
depth of the plume outflow, and (b) measuring the overturning height h in the cylindrical box.

fluid was dyed with Sodium Fluorescein. The experiment was then lit using a thin
light sheet in the plane of the axis of symmetry and normal to the camera direction
of view. This light-induced fluorescence (LIF) technique enabled visualization along
a particular radius of the axisymmetric flow, thereby allowing the details of the
flow structure to be observed. The experiments concerning the plume outflow front
position were visualized using a dye-attenuation technique in which food colouring is
added to the plume fluid and the apparatus diffusively back-lit.

The plume outflow experiments were performed in a glass visualization tank (of
1.25m square base and depth 1.5 m) filled with fresh water. The tank was fitted
with a false bottom to aid visualization. The buoyancy flux F and source–boundary
separation H were varied for a range of experiments. The source–boundary separation
was taken to be the distance from the source to the false bottom plus the distance
from the source to the plume virtual origin zv (see Hunt & Kaye 2001). A schematic
of this experimental setup is shown in figure 4(a).
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Source

Plume

Outflow

H – zv

Figure 5. A time-averaged image of the outflow showing the radial growth in depth near the
outflow source and adjustment to a constant depth gravity current. The right-hand boundary
of the image is the plume centreline. The outflow is the horizontal dark-grey region and flows
from right to left.

The overturning experiments were performed in a clear Perspex cylindrical tank
of radius 22.5 cm and maximum water depth 70 cm. The aspect ratio was set by
the height of the plume virtual source above the base of the tank. All experiments
described herein were filmed using a CCD digital camera (JAI CV-M4+CL) and
the captured images were processed using the DigiFlow software (Dalziel 1993). The
digital videos were reviewed to measure the maximum initial rise height h up the
sidewall. A schematic of this experimental setup is shown in figure 4(b).

5.1. Plume outflow experiments

Three separate series of experiments were performed: firstly, a series of LIF
experiments measured the adjustment radius of the outflow; secondly, a series of
back-lit experiments measured the outflow thickness; finally, another series of back-
lit experiments were performed to track the outflow front movement with time. In each
set of experiments the plume descended through the ambient fluid and impinged on
a horizontal false bottom in the visualization tank. The false bottom was of sufficient
width to allow the outflowing current to adjust to a steady depth ∆ss (figure 2) for
the range of source–boundary separations (H ) considered.

5.1.1. Jet-like adjustment region

The first measurement reported here is the dependence of the adjustment radius
(ra) (figure 2) on the source–boundary separation (H ). For these experiments the LIF
technique was used with the light projected up from below the tank. Once the outflow
was fully established, a time-averaged image of the flow was taken (see figure 5 for
a typical image averaged over 15 s). We observed that the outflow depth increased
with r near the point of impingement, reached a peak and then decreased to an
approximately constant value as r increased further. The depth of the outflow was
measured based on a cut-off light intensity and was read by eye from the time-
averaged images. We took the adjustment radius ra to be the radial distance at which
the outflow depth was a maximum. Beyond this radius the flow no longer behaved
as a radial jet, which is characterized by increasing depth with radius. The radial
distance to the point of peak depth was measured for 10 experiments over the range
5.5 � H � 18.2 cm. A plot of ra against H is shown in figure 6 and indicates an
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Figure 6. Radius ra at which the outflow attained a maximum depth as a function of the
source–boundary separation H . The line is the fit ra = 0.66H .

approximately linear increase in ra with H . The line plotted is a best fit to the data
forced through the origin and is given by

ra = 0.66H. (5.1)

We note that the far-field steady-state flow depth ∆ss is less than the peak depth ∆a

at r = ra; see figure 5. The maximum depth was typically around ∆a ≈ 0.2H .

5.1.2. Outflow depth

The depth of the fully developed outflow gravity current was measured using the
dye attenuation technique (Hacker, Linden & Dalziel (1996)). Measurements of layer
depth (∆ss) against plume-boundary separation (H ) for a series of 15 experiments are
shown in figure 7. The data follow a linear trend indicating that the steady-state layer
depth scales on the plume height as would be expected on dimensional grounds. The
line plotted is ∆ss =0.12H and is a linear best fit forced through the origin. This gives
a dimensionless layer depth of δss = 0.12, or approximately H/8, for the steady flow
at distances greater than the adjustment radius. Again the thickness was measured
by eye using a cut-off light intensity.

There is some disagreement about the steady depth of the outflow ∆ss from a plume
impinging on the base of a box. Manins (1979) and Wong et al. (2001) observed the
outflow depth to be approximately H/4, whereas our experimental observations
indicated ∆ss ≈ H/8 (figure 7). We believe that this discrepancy is due to a difference
in the definition of the outflow depth and how it is measured. Wong et al. (2001)
measured depth by tracking a vertical line of dye in the ambient fluid as it was
deflected by the outflow and observed that the lowermost quarter of the line was
deflected in the direction of the outflow. In our experiments the plume fluid was dyed
and the depth of the dyed layer measured. As the goal of this paper is to determine
the penetration depth of the buoyant fluid originally from the plume, rather than the
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Figure 7. Steady depth ∆ss of the outflow downstream of the adjustment region against the
source–boundary separation H . The line plotted (∆ss = 0.12H ) is a linear fit to the data forced
through the origin.

Experiment H (cm) F (cm4 s−3) Symbol

A 47.5 255 +
B 50.5 255 ×
C 21.5 255 ∗
D 32.3 182 
E 7.1 122 ◦

Table 1. Experimental parameters for the five profiles presented in figure 9.

induced motion in the ambient, we will continue to use our measure of the outflow
depth.

5.1.3. Front movement

Using the same setup, a series of experiments was run to measure the front position
of the outflow as a function of time. A series of images from a typical experiment is
shown in figure 8.

A series of five initial experiments (A to E; see table 1) were performed in which the
buoyancy flux and source–boundary separation were varied and the front movement
tracked over time. The plume was activated and the front movement was videoed.
After each experiment the video was reviewed and measurements of the front position
against time were recorded. The time was measured to within 0.25 s and the radial
distance to within 2 mm. The time origin was taken as the moment the plume made
contact with the horizontal boundary. Measurements of front movement against time
are plotted in figure 9. Sixty-five further experiments were run in which the location
of the front at t = 10 s and the time taken for the front to reach r = 20 cm were
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t = 4 s

t = 8 s

t = 12s

t = 16s

Figure 8. Series of digital images showing the descending plume and the horizontal outflow
at various times during an experiment with H = 8.5 cm and F = 255 cm4 s−3.

measured. Owing to the different experimental configuration we were able to vary
the source–boundary separation from 6.1 cm to 65.5 cm, which is considerably greater
than the range achievable using our LIF setup. Using the scalings (2.26) we are able
to collapse all the data from figure 9, and the additional 130 data points from the
second series of experiments, on to a single line. These scaled front movement data
are plotted in figure 10.

Based on the analysis presented in § 2 we expect that for small φ there would be a
jet-like region where the front movement φ ∼ τ 1/2 (2.27), followed by a pure gravity
current region where φ ∼ τ 3/4 (2.28). This behaviour is clearly seen in figure 10. The
dashed line is given by φ = 0.85τ 1/2 and describes the near-source adjustment region,
and the solid line is given by φ = 0.84τ 3/4, that is, (2.28), and describes well the fully
adjusted constant Froude number flow. Our experimental agreement with the result
of Britter (1979), along with (2.4) and (2.5), allows us to calculate the Froude number
for the fully developed flow (Fr ≈ 1.49). This is close to the value of

√
2, appropriate

for large depth, constant buoyancy flux, parallel channel gravity currents (see Simpson
1982). However, we should note that this value for the Froude number is sensitive to
the constant C = 0.84 from (2.28). The Froude number is given by Fr= 3C4/3

√
2π/4.

We now compare the empirical relationship φ =0.85τ 1/2 to (2.27). Firstly, we note
that the power-law relationship (2.27) is the same as shown by the dashed line
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Figure 9. Plot of the front position r (cm) against time t (s) for experiments A to E.
+, experiment A; ×, experiment B; ∗, experiment C; , experiment D; ◦, experiment E.
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Figure 10. Non-dimensional outflow front position φ against time τ showing the collapse
of the experimental data and the ‘forced’ jet-like region near the point of impingement, i.e.
for small φ. The dashed line is given by φ = 0.85τ 1/2; cf. (2.27). The solid line is given by
φ = 0.84τ 3/4; cf. (2.28). The discrepancy between the data and theory for large φ is due to the
increasing influence of viscous forces.

in figure 10. The collapse of the data on to a single line implies that our scaling
argument is valid and that the parameter γ can be considered a constant. It is also
possible to do a numerical check on the estimate of γ ≈ 0.9 suggested by Lee &
Jirka (1981). In order to do this we need an estimate of d∆/dr . We approximate
d∆/dr ≈ ∆a/ra , where ∆a ≈ 0.2H is the depth of the outflow at r = ra ≈ 0.66H . This
leads to d∆/dr ≈ 0.3. Substituting this value of d∆/dr and γ ≈ 0.9 into (2.27) leads
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to φ = 0.91τ 1/2, which is very close to φ = 0.85τ 1/2 obtained from our experiments.
Note that the front movement is not very sensitive to the value of γ . Performing the
reverse calculation, and estimating γ based on (2.27) and our experimental result,
leads to an estimate of γ ≈ 0.7. Therefore, even if γ was not a constant, it actually
has very little influence on the flow. Note also that both estimates are well above the
value of γ =0.53, below which the gravity current would not be forced at its source
(2.20).

We have demonstrated that the outflow from a turbulent plume that impinges
on a horizontal boundary behaves as a radial forced wall jet near the point of
impingement and downstream as a pure radial gravity current. Our measurements
demonstrate that the horizontal extent of the adjustment region scales linearly on the
vertical separation H of the plume source from the horizontal boundary (figure 6).
We have also demonstrated that the dimensionless front position φ = r/H can be
described in terms of the non-dimensional time τ = t/(H 4/3F −1/3) by (2.27) and (2.28).
Experimental results have shown that the full description of the front movement with
time is given by:

φ =

{
0.85τ 1/2 for φ < 0.66,

0.84τ 3/4 for φ � 0.66.
(5.2)

5.2. Overturning experiments

Given the uncertainty in the values of a number of parameters in our theoretical
model, a series of experiments was conducted to establish these and the exact nature
of the overturning motion in a cylindrical filling box. As with the measurements of the
adjustment radius, a LIF technique was used, though the experiment was illuminated
from the side rather than from below.

Two series of experiments were run. In series 1 the cylindrical tank was mounted
on a bench, whereas in series 2 the tank was submerged in a larger rectangular glass
tank to aid visualization. In both series the experimental procedure was the same.
The plume nozzle was set to the desired height and the tank filled with fresh water.
The water was then allowed to settle for approximately an hour so that there were no
background disturbances. Once the tank had settled a constant volume flow rate of
salt water, dyed with Sodium Fluorescein, was introduced through the nozzle. A light
sheet projected from the side of the tank illuminated the plume flow as it descended,
spread out at the tank base and rose as a fountain up the sidewall. At this point two
flow modes were observed. For small aspect ratios (tall thin cylinders) the side-wall
flow rolled back over toward the plume, engulfing ambient fluid below it. For larger
aspect ratios the flow rose up the sidewall and would then slump back down without
entraining additional ambient fluid but creating waves on the interface. A schematic
of these two flow modes is shown in figure 11. Once the initial transient had passed
the wall fountain was no longer discernible and the outflow was covered with a dense
layer of fluid. The outflow model is then no longer valid as it does not account for
any ambient stratification. This phase of the flow is beyond the scope of this work.

A series of images taken from two typical experiments are shown in figures 12 and
13. The plume outflow, rise up the sidewall and subsequent slumping or rolling back
down can be clearly seen. Typically the slumping mode (figure 12), where the upflow
collapses back down on itself, was observed for larger aspect ratios where the outflow
is a fully developed gravity current when it reaches the sidewall. The rolling mode
(figure 13), where the upflow rolls back over the outflow toward the plume centreline,
was observed for smaller aspect ratios where the outflow is not fully developed and
is still momentum-dominated.
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(a) (b)

Figure 11. A schematic of the two overturning modes. (a) The rolling mode for tall thin
cylinders that engulfs ambient fluid. (b) The slumping mode that does not engulf fluid but
creates waves on the density interface.

(a)

(b)

(c)

Figure 12. A series of three images, showing (a) the outflow from the plume, (b) the rise up
the sidewall and (c) the slumping back. The right-hand boundary of each image is the plume
centreline.
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(a) (b) (c)

Figure 13. A series of three images showing (a) the outflow from the plume, (b) the rise up
the sidewall and (c) the rolling back. The right-hand boundary of each image is the plume
centreline.
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Figure 14. (a) Peak rise height up the sidewall h (cm) plotted against the source–boundary
separation H (cm). Symbols represent the different experimental series, + series 1 and ×
series 2. (b) Dimensionless peak rise height η against the box aspect ratio Φ . Note that, as
η = h/H , for smaller values of H the relative error in measuring η increases. As a result
the difference between the h values for the five points where Φ > 2.5 is only a matter of
millimetres even though they appear much larger in this plot. The absolute difference is shown
in figure 14(a).

The peak height up the sidewall prior to slumping or rolling was recorded. The
raw data for the peak height (h) are plotted against source–boundary separation (H )
in figure 14. The two experimental series are consistent and, within the accuracy of
experimental measurements, collapse on to a single curve indicating that the problem
is purely geometric. These raw results were then re-scaled to give the variables η = h/H

and Φ =R/H used in our model and are plotted next to the raw data in figure 14.
Over the range of Φ considered, there appears to be three separate regimes. For

the larger aspect ratios considered (Φ > 1.5) the rise height decreases with increasing
aspect ratio. Typical experimental buoyancy fluxes were of the order of 180 cm4s−3,
and taking H to be order 5−10 cm for these larger Φ experiments leads to a Reynolds
number based on (4.17) of Re =1300 − 2600. Substituting these values into (4.18), we
get Φ∗ ≈ 1.5−2. This would tend to indicate that, in our experiments, for Φ � 1.5 the
outflow will be influenced by viscosity. For small aspect ratios the peak rise height
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Figure 15. Dimensionless peak rise height η as a function of the cylinder aspect ratio Φ for
the range Φ < 1.5 showing the fit (5.3). The dashed lines mark the boundaries between the
blocked, rolling, and slumping modes.

η appears to grow inversely proportional to the aspect ratio. This is expected based
on (4.14). Although it is not clear what the exact relationship is, (4.13) appears to be
applicable for Φ � 0.6. Between these two regions there is significant scatter. However,
whatever functional form the data follow, it appears to be only a very weak function
of the aspect ratio.

We now attempt to match our scaling results of (4.14) to our experimental results.
Assuming that the constant rise height regime occurs for 0.66 < Φ < 1.5, we take the
average of all points in this region and get a value of ηavg =0.38. Assuming that the
function η(Φ) is continuous at Φ = 0.66, we then substitute η =0.38 into both parts
of (4.14) to get

η ≈ 0.33Φ−1/3 for Φ < 0.66,

η ≈ 0.38 for Φ � 0.66.

}
(5.3)

In order to verify the applicability of this result for Φ < 0.66 we have re-plotted
our experimental data for 0.25 <Φ < 1.5 along with (5.3) in figure 15. There is good
agreement between our experimental data and the scaled theoretical predictions,
indicating that the −1/3 third power-law scaling is appropriate for estimating the rise
height up the sidewall of the plume outflow in an axisymmetric filling box. The full
expression for the rise height is therefore

Plume blocked for Φ < 0.25,

Rolling η ≈ 0.33Φ−1/3 for 0.25 < Φ < 0.66, Φ < 0.1Re3/8,

Slumping η ≈ 0.38 for Φ � 0.66, Φ < 0.1Re3/8.

⎫⎬
⎭ (5.4)

6. Conclusions
We have developed a model for the overturning of the flow driven by a plume in a

closed cylindrical box, namely, an axisymmetric filling box. The model was developed
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by separating the flow into three distinct regions, the plume flow, the outflow due to
impingement on the box base, and the flow rising up the sidewall. The plume was
modelled as a pure plume using the results of Morton et al. (1956). The outflow was
modelled as a constant-flux forced radial turbulent gravity current (see § 2) and the
flow up the sidewall was treated as a turbulent line fountain (see § 3).

Based on these results we were able to establish that the rise height as a function of
the box aspect ratio fell into two regimes. First, when the outflow was fully adjusted to
a pure gravity current, the rise height scaled on the box height, and was independent
of the radius (4.8). Secondly, when the outflow hit the sidewall while in the forced
adjustment region, the rise height scaled on the aspect ratio to the power of minus
one third (4.13). These relationships were assumed to hold provided that the viscous
forces are negligible (4.18) and the box was wide enough (4.19).

Experiments were conducted to verify that the scaling relationships of (4.14)
were appropriate, and to establish the constants required to complete the model.
Experiments over a wide range of aspect ratios showed good qualitative agreement
with the model proposed, and allowed a full expression for the rise height as a
function of aspect ratio to be established (5.4).
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